Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery.
نویسندگان
چکیده
Although recent studies have provided evidence for hair cell regeneration in mammalian inner ears, the mechanism underlying this regenerative process is still under debate. Here we report immunocytochemical, histological, electron microscopic, and autoradiographic evidence that, in cultured postnatal rat utricles, a substantial number of hair cells can survive gentamicin insult even their stereocilia are lost. These partially damaged hair cells can survive for a prolonged time and regrow the stereocilia. Although the number of stereocilia-bearing hair cells increases over time after gentamicin insult, hair cell and supporting cell numbers remain essentially unchanged. Tritiated thymidine autoradiography and bromodeoxyuridine immunocytochemistry of the cultures demonstrate that cell proliferation in the sensory epithelium is very limited and is far below the number of recovered hair cells. Furthermore, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling analysis indicates that gentamicin-induced apoptosis in the sensory epithelium occurs mainly during a 2 d treatment period, and additional cell death is minimal 2-11 d after treatment. Considered together, intracellular repair of partially damaged hair cells can be an important contributor to spontaneous hair cell recovery in mammalian inner ears.
منابع مشابه
Augmenting Peripheral Nerve Regeneration Using Rat Hair Follicle Stem Cells (rHFSCs) in Rats
Introduction: Nowadays, cell therapy is the most advanced treatment of peripheral nerve injury. The aim of this study was to determine the effects of transplantation of hair follicle stem cells on the regeneration of the sciatic nerve injury in rats. Methods: The bulge region of the rat whisker was isolated and cultured. Morphological and biological features of the cultured bulge cells were ob...
متن کاملTherapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article
The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...
متن کاملIn vitro Differentiation of Hair Follicle Stem Cell into Keratinocyte by Simvastatin
Background: Hair follicle stem cells (HFSCs) located in the bulge area has shown to be highly proliferative and could differentiate into neurons, glia, smooth muscle cell, and melanocytes in vitro. Simvastatin is an HMG-CoA reductase inhibitor that exerts pleiotropic effects beyond simple low-density lipoprotein lowering and has a similar impact on the differentiation of bone marrow stromal cel...
متن کاملMorphological Features of Cell Death Through Microscopic View
Cells are active components in their environment and constantly adjusting their performance to improve extracellular milieu changing. This approach is reflected their tends of maintaining intracellular homeostasis. When the cells encounter stress or pathologic stimuli, they can undergo a new manner (adaptation) and new steady state for achieving viability and function. If the external stress is...
متن کاملImmunocytochemical Study on Microtubule Reorganization in HL-60 Leukemia Cells Undergoing Apoptosis
Background: Microtubules (MT) are important components of cell cytoskeleton and play key roles in cell motility mitosis and meiosis. They are also the targets of several anticancer agents which indicating their importance in maintaining cell viability. Microtubular reorganization contributing to apoptotic morphology occurs in normal and neoplastic cells undergoing apoptosis induced by cytotoxic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 6 شماره
صفحات -
تاریخ انتشار 1999